Purification and characterization of ribonucleoproteins from pea chloroplasts

Abstract
RNA-binding proteins are known to mediate the post-transcriptional regulation of genes in many organisms. Recently they have been found to be important in the expression of plastid genes. We have purified a group of three single-stranded nucleic-acid-specific acidic proteins (33, 30 and 28 kDa) from chloroplast extracts of pea (Pisum sativum L.), using single-stranded DNA affinity chromatography. All of them have acidic amino termini but the amino acid sequences are unique to each polypeptide, with partial similarities to the recently reported ribonucleoproteins from tobacco chloroplasts. The pea proteins are also antigenically distinct, as shown by Western blot analysis using polyclonal antisera for purified proteins. Further, from their large nucleic-acid-binding domains and the polynucleotide substrate affinities, they are predicted to belong to a family of pea plastid ribonucleoproteins. In vivo radiolabeling of proteins in the presence of translational inhibitors as well as in vitro translation of leaf tissue RNA suggest that these proteins are encoded in the nucleus. Antibody cross-reactivity experiments reveal that their genes are conserved during plastid evolution.