The pharmacological properties of the presynaptic serotonin autoreceptor in the pig brain cortex conform to the 5-HT1D receptor subtype

Abstract
The effects of serotonin receptor agonists and antagonists on the electrically (3 Hz) evoked 3H overflow were determined on pig brain cortex slices preincubated with 3H-serotonin and superfused with physiological salt solution containing indalpine (an inhibitor of serotonin uptake) plus phentolamine. The potencies of the serotonin receptor agonists and antagonists were compared with their affinities for 5-HT1A, 5-HT1B, 5-HT1c, and 5-HT1D binding sites in pig or rat tissue membranes; in addition, the potencies of the agonists were compared to their potencies in inhibiting adenylate cyclase activity in membranes of calf substantia nigra. In the superfusion experiments on pig brain cortex slices the following rank orders of potencies were obtained: agonists, serotonin > 5-methoxytryptamine = 5-carboxamidotryptamine >R U 24969 (5-methoxy-3(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole) > SDZ 21009 (4(3-terbutylamino- 2-hydroxypropoxy)indol- 2-carbonic-acid-isopropylester) ≥ yohimbine ≥ cyanopindolol > 8-OHDPAT (8-hydroxy-2-(di-n-propylamino)tetralin) ≥ CGS 12066 B (7-trifluoromethyl-4(4-methyl-l-piperazinyl)-pyrrolo[1,2-a]quinoxaline); ipsapirone and urapidil were ineffective; antagonists (antagonism determined against 5methoxytryptamine as an agonist), metitepine > metergoline > mianserin. Propranolol, spiperone or mesulergine did not produce a shift of the concentration-response curve for 5-methoxytryptamine. The potencies of the serotonin receptor agonists in pig brain cortex slices were significantly correlated with their affinities for 5-HT1c and 5-HT1D binding sites in membranes of the pig choroid plexus and caudate nucleus, respectively, but not with their affinities for 5-HT1A and 5-HT1B sites in membranes of the cerebral cortex of pig and rat, respectively. The agonist potencies in decreasing 3H overflow were also significantly correlated with their potencies in inhibiting adenylate cylase activity in calf substantia nigra (i.e., a 5-HT1D receptor-mediated effect). In conclusion, the pig brain cortical 5-HT autoreceptor probably belongs to the 5-HT1D subtype. The involvement of 5-HT1c recognition sites was excluded by the low potency of mianserin as an antagonist and, in particular, by the ineffectiveness of the 5-HT1c receptor antagonist mesulergine.