Molecular dynamics by numerical simulation in zeolites: Methane in NaA

Abstract
A molecular dynamical study of one methane molecule in a cavity of NaA zeolite is performed in order to compare calculated to experimental data obtained by infrared spectroscopy and neutron scattering experiments in the temperature range 300–30 K. The calculation shows the trajectory of the molecule in the cavity and then the occupied volume as a function of energy. It allows the calculation of average quantities and correlation functions: (i) the mean field felt by the molecule comparable to the field responsible for the induced infrared band ν1, (ii) the average of the potential energy (to be compared to the heat of adsorption) and of the velocity squared, (iii) the external frequency distribution, and (iv) the position autocorrelation function which is related to the dynamical structure factor seen by neutron scattering.

This publication has 20 references indexed in Scilit: