Global well-posedness for Schrödinger equations with derivative

Abstract
We prove that the 1D Schr\"odinger equation with derivative in the nonlinear term is globally well-posed in $H^{s}$, for $s>2/3$ for small $L^{2}$ data. The result follows from an application of the ``I-method''. This method allows to define a modification of the energy norm $H^{1}$ that is ``almost conserved'' and can be used to perform an iteration argument. We also remark that the same argument can be used to prove that any quintic nonlinear defocusing Schr\"odinger equation on the line is globally well-posed for large data in $H^{s}$, for $s>2/3$ .

This publication has 0 references indexed in Scilit: