Time-dependent Hartree-Fock dielectric function for the uniform electron gas
- 15 September 1980
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 22 (6) , 2737-2743
- https://doi.org/10.1103/physrevb.22.2737
Abstract
The time-dependent Hartree-Fock (TDHF) formula for the dielectric function, which was derived by the authors in a previous paper, is here adapted to the uniform electron gas. The TDHF formula is put into a form that enables one to apply the analytic tetrahedron method. Convergence studies show that a large number of tetrahedrons are required to accurately compute the first or random-phase approximation (RPA) term in the TDHF susceptibility, while a smaller number are required for the second or exchange term. Hartree-Fock (HF) energies and an value of 1.74 were used to compute both terms in the TDHF susceptibility as a function of wave vector . The second or exchange term was found to be of the same order of magnitude as the first or RPA term. The full TDHF susceptibility was found to differ substantially from the RPA susceptibility computed with Hartree energies. Thus exchange, which is contained in both the HF energies and the exchange term itself, was found to have a major effect on the susceptibility. It was found that the TDHF susceptibility has an absolute maximum at a nonzero value of , indicating that when exchange effects are included in the susceptibility, the ground state of the uniform electron gas contains a spin density wave.
Keywords
This publication has 17 references indexed in Scilit:
- Dynamic correlations in an electron gas. I. First-order perturbation theoryPhysical Review B, 1979
- Time-dependent Hartree-Fock formalism for the dielectric functionPhysical Review B, 1979
- Dynamical exchange effects on the plasmon dispersion in aluminumPhysica Status Solidi (b), 1979
- Electron Correlations at Metallic DensitiesPhysical Review B, 1968
- New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas ProblemPhysical Review B, 1965
- Self-Consistent Field Approach to the Many-Electron ProblemPhysical Review B, 1959
- A dielectric formulation of the many body problem: Application to the free electron gasIl Nuovo Cimento (1869-1876), 1958
- Correlation Energy of a Free Electron GasPhysical Review B, 1958
- Electron Interaction in Solids. Collective Approach to the Dielectric ConstantPhysical Review B, 1958
- A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron GasPhysical Review B, 1953