Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics

Abstract
Distributions of aerosol‐associated soluble ions over much of the South Pacific were determined by sampling from the NASA DC‐8 as part of the Pacific Exploratory Mission (PEM) Tropics campaign. The mixing ratios of all ionic species were surprisingly low throughout the free troposphere (2–12 km), despite the pervasive influence from biomass burning plumes advecting over the South Pacific from the west during PEM‐Tropics. At the same time, the specific activity of 7Be frequently exceeded 1000 fCi m−3 through much of the depth of the troposphere. These distributions indicate that the plumes must have been efficiently scavenged by precipitation (removing the soluble ions), but that the scavenging must have occurred far upwind of the DC‐8 sampling regions (otherwise 7Be activities would also have been low). This inference is supported by large enhancements of HNO3 and carboxylic acids in many of the plumes, as these soluble acidic gases would also be readily scavenged in any precipitation events. Decreasing mixing ratios of NH4+ with altitude in all South Pacific regions sampled provide support for recent suggestions that oceanic emissions of NH3 constitute a significant source far from continents. Our sampling below 2 km reaffirms the latitudinal pattern in the methylsulfonate/non‐sea‐salt sulfate (MSA/nss SO4=) molar ratio established through surface‐based and shipboard sampling, with values increasing from 4= ratio in the tropical upper troposphere. This finding complicates use of this ratio to infer the zonal origin of biogenic S transported long distances.