Abstract
We examined factors related to the potent antagonistic effect of Escherichia coli and Bacteroides ovatus on Staphylococcus aureus in anaerobic continuous flow cultures. In the presence of sugars fermentable by E. coli alone or both E. coli and S. aureus, motile E. coli strains exerted a potent antagonistic effect and S. aureus was expelled from the culture vessel within a few days. Conversely, in the presence of a sugar fermentable by S. aureus alone, the antagonistic effect of E. coli was diminished and S. aureus persisted at ca. 5 × 105 cfu/mL. B. ovatus alone exerted only a weak antagonistic effect on S. aureus in any culture conditions; however, when B. ovatus was cocultivated with E. coli and S. aureus, even in the presence of a sugar fermentable by S. aureus but not by E. coli, the potent antagonistic effect was restored. Escherichia coli showed the same level of antagonistic effect either in the presence of acetic acid (ca. 32 mM), propionic acid (4 mM), butyric acid (17 mM) and hydrogen sulfide(5 × 10−1 mM) or when these metabolic products, except for a small amount of acetic acid (1.2 mM), were not present. In these culture conditions, S. aureus populations were lost at rates much higher than theoretical wash out rates of resting cells. These results indicate the presence of some bactericidal factors other than the volatile fatty acids and hydrogen sulfide. The bactericidal factors were not found in cultures of E. coli heated in boiling water for 10 min and in cell-free culture filtrates. Thus, the bactericidal factors seem to be associated with live E. coli cells. The nature of the bactericidal factors is not clear at present.