Determination of the fatty acid profile by 1H‐NMR spectroscopy

Abstract
The common unsaturated fatty acids present in many vegetable oils (oleic, linoleic and linolenic acids) can be quantitated by 1H‐nuclear magnetic resonance spectroscopy (1H‐NMR). A key feature is that the signals of the terminal methyl group of linolenic acid are shifted downfield from the corresponding signals in the other fatty acids, permitting their separate integration and quantitation of linolenic acid. Then, using the integration values of the signals of the allylic and bis‐allylic protons, oleic and linoleic acids can be quantitated. The procedure was verified for mixtures of triacylglycerols (vegetable oils) and methyl esters of oleic, linoleic and linolenic acids as well as palmitic and stearic acids. Generally, the NMR (400 MHz) results were in good agreement with gas chromatographic (GC) analyses. As the present 1H‐NMR‐based procedure can be applied to neat vegetable oils, the preparation of derivatives for GC would be unnecessary. The present method is extended to quantitating saturated (palmitic and stearic) acids, although in this case the results deviate more strongly from actual values and GC analyses. Alternatives to the iodine value (allylic position equivalents and bis‐allylic position equivalents) can be derived directly from the integration values of the allylic and bis‐allylic protons.