Individualization as Driving Force of Clustering Phenomena in Humans

Abstract
One of the most intriguing dynamics in biological systems is the emergence of clustering, in the sense that individuals self-organize into separate agglomerations in physical or behavioral space. Several theories have been developed to explain clustering in, for instance, multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of fish, and animal herds. A persistent puzzle, however, is the clustering of opinions in human populations, particularly when opinions vary continuously, such as the degree to which citizens are in favor of or against a vaccination program. Existing continuous opinion formation models predict “monoculture” in the long run, unless subsets of the population are perfectly separated from each other. Yet, social diversity is a robust empirical phenomenon, although perfect separation is hardly possible in an increasingly connected world. Considering randomness has not overcome the theoretical shortcomings so far. Small perturbations of individual opinions trigger social influence cascades that inevitably lead to monoculture, while larger noise disrupts opinion clusters and results in rampant individualism without any social structure. Our solution to the puzzle builds on recent empirical research, combining the integrative tendencies of social influence with the disintegrative effects of individualization. A key element of the new computational model is an adaptive kind of noise. We conduct computer simulation experiments demonstrating that with this kind of noise a third phase besides individualism and monoculture becomes possible, characterized by the formation of metastable clusters with diversity between and consensus within clusters. When clusters are small, individualization tendencies are too weak to prohibit a fusion of clusters. When clusters grow too large, however, individualization increases in strength, which promotes their splitting. In summary, the new model can explain cultural clustering in human societies. Strikingly, model predictions are not only robust to “noise”—randomness is actually the central mechanism that sustains pluralism and clustering. Modern societies are characterized by a large degree of pluralism in social, political and cultural opinions. In addition, there is evidence that humans tend to form distinct subgroups (clusters), characterized by opinion consensus within the clusters and differences between them. So far, however, formal theories of social influence have difficulty explaining this coexistence of global diversity and opinion clustering. In this study, we identify a missing ingredient that helps to fill this gap: the striving for uniqueness. Besides being influenced by their social environment, individuals also show a desire to hold a unique opinion. Thus, when too many other members of the population hold a similar opinion, individuals tend to adopt an opinion that distinguishes them from others. This notion is rooted in classical sociological theory and is supported by recent empirical research. We develop a computational model of opinion dynamics in human populations and demonstrate that the new model can explain opinion clustering. We conduct simulation experiments to study the conditions of clustering. Based on our results, we discuss preconditions for the persistence of pluralistic societies in a globalizing world.
All Related Versions