A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients

Abstract
General pulse sequence elements that achieve sensitivity-enhanced coherence transfer from a heteronucleus to protons of arbitrary multiplicity are introduced. The building blocks are derived from the sensitivity-enhancement scheme introduced by Cavanagh et al. ((1991) J. Magn. Reson., 91, 429–436), which was used in conjunction with gradient coherence selection by Kay et al. ((1992) J. Am. Chem. Soc., 114, 10663–10665), as well as from a multiple-pulse sequence effecting a heteronuclear planar coupling Hamiltonian. The building blocks are incorporated into heteronuclear correlation experiments, in conjunction with coherence selection by the formation of a heteronuclear gradient echo. This allows for efficient water suppression without the need for water presaturation. The methods are demonstrated in HSQC-type experiments on a sample of a decapeptide in H2O. The novel pulse sequence elements can be incorporated into multidimensional experiments.

This publication has 0 references indexed in Scilit: