Electrochemical Pretreatment of Polycrystalline Gold Electrodes To Produce a Reproducible Surface Roughness for Self-Assembly: A Study in Phosphate Buffer pH 7.4

Abstract
It has been emphasized in several studies that the state of the surface, including the surface roughness, is very important for the reproducible formation of high-quality self-assembled monolayers on gold. The pulsed-potential pretreatment procedure described in this paper can, in a reproducible way, reduce the surface roughness of mechanically polished polycrystalline gold electrodes by a factor 2. The developed procedure, in which the gold is alternately oxidized and reduced, has been optimized for use in a flow system (100 mM phosphate buffer pH 7.4). The influence of the pretreatment procedure on the surface roughness of the electrodes has been studied by in-situ oxygen adsorption measurements using cyclic voltammetry. The most effective pulse regime in producing a gold surface with a reproducible and relatively low surface roughness is a triple-potential pulse waveform, with potentials of +1.6, 0.0, and −0.8 V vs SCE and pulse widths of 100 ms for each potential. Prolonged pulsing for 2000−5000 s with the gold working electrode in a flow-through cell showed an electropolishing effect, i.e., a decrease of the roughness in time. Flow conditions are very important: the roughness decreased faster at higher flow rates, while an increase was observed without flow. A process of reconstruction and dissolution of gold during application of the potential pulses under flow conditions is assumed to account for the observed phenomena. A self-assembled monolayer of thioctic acid with reproducible characteristics, determined with impedance measurements, could be formed on a pretreated gold surface.