Radiative Transfer to Space through a Precipitating Cloud at Multiple Microwave Frequencies. Part I: Model Description
Open Access
- 1 September 1988
- journal article
- Published by American Meteorological Society in Journal of Applied Meteorology and Climatology
- Vol. 27 (9) , 1055-1073
- https://doi.org/10.1175/1520-0450(1988)027<1055:rttsta>2.0.co;2
Abstract
In a two-part study we investigate the impact of time-dependent cloud microphysical structure on the transfer to space of passive microwave radiation at several frequencies across the EHF and lower SHF portions of the microwave spectrum in order to explore the feasibility of using multichannel passive-microwave retrieval techniques for the estimation of precipitation from space-based platforms. A series of numerical sensitivity experiments have been conducted that were designed to quantify the impact of an evolving cumulus cloud in conjunction with a superimposed rain layer on the transfer to space of microwave radiation emitted and scattered from the cloud layers, rain layer and the underlying surface. The specification of cloud microphysics has been based on the results of a time-dependent two-dimensional numerical cumulus model developed by Hall (1980). An assortment of vertically homogeneous rain layers, described by the Marshall-Palmer rain drop distribution, has been inserted in the model a... Abstract In a two-part study we investigate the impact of time-dependent cloud microphysical structure on the transfer to space of passive microwave radiation at several frequencies across the EHF and lower SHF portions of the microwave spectrum in order to explore the feasibility of using multichannel passive-microwave retrieval techniques for the estimation of precipitation from space-based platforms. A series of numerical sensitivity experiments have been conducted that were designed to quantify the impact of an evolving cumulus cloud in conjunction with a superimposed rain layer on the transfer to space of microwave radiation emitted and scattered from the cloud layers, rain layer and the underlying surface. The specification of cloud microphysics has been based on the results of a time-dependent two-dimensional numerical cumulus model developed by Hall (1980). An assortment of vertically homogeneous rain layers, described by the Marshall-Palmer rain drop distribution, has been inserted in the model a...Keywords
This publication has 0 references indexed in Scilit: