The star cluster system of the 3 Gyr old merger remnant NGC 1316: Clues from optical and near-infrared photometry

Abstract
The giant merger remnant galaxy NGC 1316 (Fornax A) is an ideal probe for studying the long-term effects of a past major merger on star cluster systems, given its spectroscopically derived merger age of ~3 Gyr which we reported in a recent paper. Here we present new ground-based, large-area optical and near-IR imaging of star clusters in NGC 1316, complemented with deep HST/WFPC2 imaging. We find that the optical-near-IR colours and luminosities of the brightest ~10 clusters in NGC 1316 are consistent with those of intermediate-age (2-3 Gyr) populations. Unlike `normal' giant ellipticals, the B-I colour distribution of clusters in NGC 1316 is not clearly bimodal. However, the luminosity functions (LFs) of the blue and red parts of the cluster colour distribution are different: The red cluster LF is well represented by a power law with index -1.2 +/- 0.3, extending to about 1.5 mag brighter (in B) than those of typical giant ellipticals. In contrast, the shape of the blue cluster LF is consistent with that of `normal' spiral and elliptical galaxies. We conclude that the star cluster system of NGC 1316 is a combination of a population of age ~3 Gyr having roughly solar metallicity and a population of old, metal-poor clusters which probably belonged to the pre-merger galaxies. After the 3 Gyr old, metal-rich clusters fade to an age of 10 Gyr, they will form a red `peak' in a bimodal cluster colour distribution. This `red peak' will have a colour consistent with that found in `normal, old' giant ellipticals of the same galaxy luminosity (taking age dimming into account). These features of the star cluster system of NGC 1316 are fully consistent with scenarios for forming `normal' giant elliptical galaxies through gas-rich mergers at look-back times $\ga$ 10 Gyr.

This publication has 0 references indexed in Scilit: