Goal-directed, dynamic animation of human walking
- 1 July 1989
- journal article
- Published by Association for Computing Machinery (ACM) in ACM SIGGRAPH Computer Graphics
- Vol. 23 (3) , 233-242
- https://doi.org/10.1145/74334.74357
Abstract
This paper presents a hybrid approach to the animation of human locomotion which combines goal-directed and dynamic motion control. Knowledge about a locomotion cycle is incorporated into a hierarchical control process. The desired locomotion is conveniently specified at the top level as a task (e.g. walk at speed v ), which is then decomposed by application of the concepts of step symmetry and state-phase-timings . As a result of this decomposition, the forces and torques that drive the dynamic model of the legs are determined by numerical approximation techniques. Rather than relying on a general dynamic model, the equations of motion of the legs are tailored to locomotion and analytically constrained to allow for only a specific range of movements. The dynamics of the legs produce a generic, natural locomotion pattern which is visually upgraded by some kinematic "cosmetics" derived from such principles as virtual leg and determinants of gait . A system has been implemented based on these principles and has shown that when a few parameters, such as velocity, step length and step frequency are specified, a wide variety of human walks can be generated in almost real-time.Keywords
This publication has 8 references indexed in Scilit:
- A modeling system based on dynamic constraintsPublished by Association for Computing Machinery (ACM) ,1988
- Controlling dynamic simulation with kinematic constraintsACM SIGGRAPH Computer Graphics, 1987
- Articulated Figure Positioning by Multiple ConstraintsIEEE Computer Graphics and Applications, 1987
- Legged robotsCommunications of the ACM, 1986
- Computational modeling for the computer animation of legged figuresPublished by Association for Computing Machinery (ACM) ,1985
- Motor Control Techniques for Figure AnimationIEEE Computer Graphics and Applications, 1982
- LSODE and LSODI, two new initial value ordinary differential equation solversACM SIGNUM Newsletter, 1980
- An evaluation of the kinematics of gait by minimum energyJournal of Biomechanics, 1968