Abstract
The heat transfer rates inside rectangular air enclosures of aspect ratios between 0.1 and 1.0 were investigated interferometrically for a Grashof number range between 2.64 × 106 and 5.45 × 106. The enclosures were composed of dissimilar temperature vertical walls and two types of ceilings and floors. One type was made from constant temperature plates kept at the vertical wall temperatures, and the other type was made of low thermal conductivity polyurethane foam rubber. The heat transfer characteristics and flow patterns within these two types of enclosures were found to be significantly different. For aspect ratios between 0.4 and 1.0 the isothermal ceiling and floor approximate an adiabatic boundary condition much better than foam because much less heat was interchanged between the floor (or ceiling) and the air in the enclosure.

This publication has 0 references indexed in Scilit: