Abstract
L-structure in a Banach space X was defined in (3) by L-projections, that is projections P satisfyingfor all x ∈ X. The significance of L-structure is shown by the following facts: (1) All L-projections on X commute and together form a complete Boolean algebra. (2) X can be isometrically represented as a vector-valued L1 on a measure space constructed from the Boolean algebra of its L-projections (2). (3) L1-spaces in the ordinary sense are characterized among Banach spaces by properties equivalent to having so many L-projections that the representation in (2) is everywhere one-dimensional.

This publication has 4 references indexed in Scilit: