Skyrmions without Sigma Models in Quantum Hall Ferromagnets

Abstract
We report on a microscopic theory of the Skyrmion states which occur in the quantum Hall regime. The theory is based on the identification of Skyrmion states in this system with zero-energy eigenstates of a hard-core model Hamiltonian. We find that for $N_{\phi}$ orbital states in a Landau level, a set of Skyrmions states with orbital degeneracy $N_{\phi}-K$ and spin quantum number $S = N/2 -K$ exists for each nonnegative integer $K$. The energetic ordering of states with different $K$ depends on the interaction potential.