Species delimitation and nematode biodiversity: phylogenies rule
- 1 January 2002
- journal article
- research article
- Published by Brill in Nematology
- Vol. 4 (5) , 615-625
- https://doi.org/10.1163/15685410260438908
Abstract
Practitioners of nematode taxonomy have rarely been explicit about what species represent or how data are being used to delimit species prior to their description. This lack of explicitness reflects the broader species problem common to all biology: there is no universally accepted idea of what species are and, as a consequence, scientists disagree on how to go about finding species in nature. However, like other biologists, nematologists seem to agree that species are real and discrete units in nature, and that they result from descent with modification. This evolutionary perspective provides a conceptual framework for nematologists to view species as independent evolutionary lineages, and provides approaches for their delimitation. Specifically, species may be delimited scientifically by methods that can test the hypothesis of lineage independence. For sequence data, such hypothesis testing should be based on sampling many individual organisms for multiple loci to avoid mistaking tokogeny and gene trees as evidence of species. Evolutionary approaches to analysing data and delimiting species avoid the inherent pitfalls in approaches that use all observed sequence differences to define species through calculation of a genetic distance. To illustrate evolutionary species delimitation, molecular data are used to test the hypothesis that hookworms parasitic in northern fur seals and in California sea lions represent separate species. The advantages and potential caveats of employing nucleotide sequence data for species delimitation are discussed, and the merits of evolutionary approaches are contrasted to inherent problems in similarity-based methods.Keywords
This publication has 0 references indexed in Scilit: