Abstract
Protein molecules are essential catalysts in life processes and also form much of the substance of living material. Their three dimensional structures determine their biological function. Their biosynthesis is primarily determined by arrays of nucleic acid macromolecules (DNA and RNA), and the amino acid sequences that constitute their long spatially organized peptide-chain molecules reflect at one remove this DNA coding system, and thus record a step-by-step history of some of the viable genetic events (natural or man-controlled) that have created the organism and the breed. Amino acid sequences can be used to trace the progress of controlled breeding in two ways: by extrapolation back from living breeds, and by analysis of ancient protein material. O f the latter, bone or tendon or skin collagens and hair keratins are the most perfectly preserved as molecular structures through 20000 years and indeed much longer. Amino acid sequences are expensive to determine (collagen has 1052 amino acid residues), and the potential of this palaeobiological information has been as yet little exploited. The first approach has, however, been more explored, in both plants and animals. Several protein systems must be studied in conjunction to reveal the phylogenetic threads in any one breed. As the three dimensional quaternary structure of protein molecules becomes more appreciated in relation to biological function, and as new techniques and procedures are developed, amino acid sequence data can become more informative in our ultimate understanding of early selective breeding.