• 1 January 1979
    • journal article
    • research article
    • Vol. 254  (4) , 1016-1021
Abstract
Homogeneous biosynthetic sn-glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) of E. coli was potently inhibited by palmitoyl-CoA and other long chain acyl-CoA thioesters. The concentration dependence of this inhibition was not cooperative. Enzyme activity was inhibited 50% at 1 .mu.M palmitoyl-CoA; thus, this inhibition occurred at concentrations below the critical micellar concentration of palmitoyl-CoA. Palmitoyl-CoA was a reversible, noncompetitive inhibitor with respect to both NADPH and dihydroxyacetone phosphate. Palmitoyl-CoA did not affect the quaternary structure of the enzyme. This inhibition could be prevented or reversed by the addition of phospholipid vesicles prepared from E. coli phospholipids. Palmitoyl-CoA did not alter the kinetics of inhibition by sn-glycerol 3-phosphate, which is a proven physiological regulator of this enzyme. Decanoyl-CoA, dodecanoyl-CoA, myristoyl-CoA, stearoyl-CoA and oleoyl-CoA inhibited sn-glycerol-3-phosphate dehydrogenase at concentrations below their critical micellar concentrations. Palmitate inhibited sn-glycerol-3-phosphate dehydrogenase activity 50% at 200 .mu.M. Palmitoyl-carnitine, deoxycholate, taurocholate, and dodecyl sulfate were more potent inhibitors than Triton X-100, Tween-20, or Tween-80. Palmitoyl-acyl carrier protein at concentrations up to 50 .mu.M had no effect on sn-glycerol-3-phosphate dehydrogenase activity. The possible physiological role of long chain fatty acyl-CoA thioesters in the regulation of sn-glycerol 3-phosphate and phospholipid biosynthesis in E. coli is discussed.