Hyphal Elongation Is Regulated Independently of Cell Cycle inCandida albicans

Abstract
The mechanism for apical growth during hyphal morphogenesis inCandida albicans is unknown. Studies fromSaccharomyces cerevisiae indicate that cell morphogenesis may involve cell cycle regulation by cyclin-dependent kinase. To examine whether this is the mechanism for hyphal morphogenesis, the temporal appearance of different spindle pole body and spindle structures, the cell cycle-regulated rearrangements of the actin cytoskeleton, and the phosphorylation state of the conserved Tyr19 of Cdc28 during the cell cycle were compared and found to be similar between yeast and serum-induced hyphal apical cells. These data suggest that hyphal elongation is not mediated by altering cell cycle progression or through phosphorylation of Tyr19 of Cdc28. We have also shown that germ tubes can evaginate before spindle pole body duplication, chitin ring formation, and DNA replication. Similarly, tip-associated actin polarization in each hypha occurs before the events of the G1/S transition and persists throughout the cell cycle, whereas cell cycle-regulated actin assemblies come and go. We have also shown that cells in phases other than G1can be induced to form hyphae. Hyphae induced from G1cells have no constrictions, and the first chitin ring is positioned in the germ tube at various distances from the base. Hyphae induced from budded cells have a constriction and a chitin ring at the bud neck, beyond which the hyphae continue to elongate with no further constrictions. Our data suggest that hyphal elongation and cell cycle morphogenesis programs are uncoupled, and each contributes to different aspects of cell morphogenesis.