Word problems related to periodic solutions of a non-autonomous system
- 1 July 1990
- journal article
- Published by Cambridge University Press (CUP) in Mathematical Proceedings of the Cambridge Philosophical Society
- Vol. 108 (1) , 127-151
- https://doi.org/10.1017/s0305004100069012
Abstract
No abstract availableThis publication has 10 references indexed in Scilit:
- Some cubic systems with several limit cyclesNonlinearity, 1988
- Small-amplitude limit cycles of certain Liénard systemsProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1988
- Limit Cycles of Polynomial Systems – Some Recent DevelopmentsPublished by Cambridge University Press (CUP) ,1988
- Periodic solutions of a quartic nonautonomous equationNonlinear Analysis, 1987
- Non-autonomous equations related to polynomial two-dimensional systemsProceedings of the Royal Society of Edinburgh: Section A Mathematics, 1987
- The number of small-amplitude limit cycles of Liénard equationsMathematical Proceedings of the Cambridge Philosophical Society, 1984
- The number of limit cycles of certain polynomial differential equationsProceedings of the Royal Society of Edinburgh: Section A Mathematics, 1984
- Fonctionnelles causales non linéaires et indéterminées non commutativesBulletin de la Société Mathématiques de France, 1981
- On the number of solutions of the equation $$\frac{{dx}}{{dt}} = \sum\limits_{j = 0}^n {a_j (t) x^j ,0 \leqq t \leqq 1,} $$ for whichx(0)=x(1)Inventiones Mathematicae, 1980
- The Number of Periodic Solutions of the Equation Ż=z
N
+p 1 (t )z
N
−1 +…+p
N
(t )Proceedings of the London Mathematical Society, 1973