The dynamic structure of the pericellular matrix on living cells.
Open Access
- 15 December 1993
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 123 (6) , 1899-1907
- https://doi.org/10.1083/jcb.123.6.1899
Abstract
Although up to several microns thick, the pericellular matrix is an elusive structure due to its invisibility with phase contrast or DIC microscopy. This matrix, which is readily visualized by the exclusion of large particles such as fixed red blood cells is important in embryonic development and in maintenance of cartilage. While it is known that the pericellular matrix which surrounds chondrocytes and a variety of other cells consists primarily of proteoglycans and hyaluronan with the latter binding to cell surface receptors, the macromolecular organization is still speculative. The macromolecular organization previously could not be determined because of the collapse of the cell coat with conventional fixation and dehydration techniques. Until now, there has been no way to study the dynamic arrangement of hyaluronan with its aggregated proteoglycans on living cells. In this study, the arrangement and mobility of hyaluronan-aggrecan complexes were directly observed in the pericellular matrix of living cells isolated from bovine articular cartilage. The complexes were labeled with 30- to 40-nm colloidal gold conjugated to 5-D-4, an antibody to keratan sulfate, and visualized with video-enhanced light microscopy. From our observations of the motion of pericellular matrix macromolecules, we report that the chondrocyte pericellular matrix is a dynamic structure consisting of individual tethered molecular complexes which project outward from the cell surface. These complexes undergo restricted rotation or wobbling. When the cells were cultured with ascorbic acid, which promotes production of matrix components, the size of the cell coat and the position of the gold probes relative to the plasma membrane were not changed. However, the rapidity and extent of the tethered motion were reduced. Treatment with Streptomyces hyaluronidase removed the molecules that displayed the tethered motion. Addition of hyaluronan and aggrecan to hyaluronidase-treated cells yielded the same labeling pattern and tethered motion observed with native cell coats. To determine if aggrecan was responsible for the extended configuration of the complexes, only hyaluronan was added to the hyaluronidase-treated cells. The position and mobility of the hyaluronan was detected using biotinylated hyaluronan binding region (b-HABR) and gold streptavidin. The gold-labeled b-HABR was found only near the cell surface. Based on these observations, the hyaluronan-aggrecan complexes composing the cell coat are proposed to be extended in a brush-like configuration in an analogous manner to that previously described for high density, grafted polymers in good solvents.Keywords
This publication has 25 references indexed in Scilit:
- Nanomelic chondrocytes synthesize, but fail to translocate, a truncated aggrecan precursorJournal of Cell Science, 1993
- Hyaluronic acid in human articular cartilage. Age-related changes in content and sizeBiochemical Journal, 1988
- Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopyBiophysical Journal, 1987
- Changes in the pericellular matrix during differentiation of limb bud mesodermDevelopmental Biology, 1985
- Pericellular coat of chick embryo chondrocytes: structural role of hyaluronate.The Journal of cell biology, 1984
- The effect of link protein on proteoglycan aggregate structure. An electron microscopic study of the molecular architecture and dimensions of proteoglycan aggregates reassembled from the proteoglycan monomers and link proteins of bovine fetal epiphyseal cartilage.Journal of Biological Chemistry, 1984
- Identification of a monoclonal antibody that specifically recognizes corneal and skeletal keratan sulfate. Monoclonal antibodies to cartilage proteoglycan.Journal of Biological Chemistry, 1983
- Synthesis of cartilage matrix by mammalian chondrocytes in vitro. I. Isolation, culture characteristics, and morphology.The Journal of cell biology, 1982
- Structure of the pericellular matrix: Association of heparan and chondroitin sulfates with fibronectin-procollagen fibersCell, 1982
- On the pericellular zone of some mammalian cells in vitroExperimental Cell Research, 1968