Scanning thermal microscopy: Subsurface imaging, thermal mapping of polymer blends, and localized calorimetry

Abstract
We have used a platinum/10% rhodium resistance thermal probe to image variations in thermal conductivity or diffusivity at micron resolution and to perform localized calorimetry. The probe is used as an active device that acts both as a highly localized heat source and detector; by generating and detecting evanescent temperature waves, we may control the maximum depth of sample that is imaged. Earlier work has shown that subsurface images of metal particles buried in a polymer matrix are consistent with computer simulations of heat flows and temperature profiles, predicting that a 1 μm radius probe in air will give a lateral resolution of ∼200 nm near the surface, with a depth detection of a few μm. We have a special interest in polymer blends, and we present zero-frequency mode and temperature-modulation mode thermal images of some immiscible blends in which the image contrast arises from differences in thermal conductivity/diffusivity between single polymer domains. The behavior of domains is observed in real time as the blends are subjected to a slow temperature rise. We have also achieved localized differential thermal analysis of a number of polymers, and recorded events such as glass transitions, meltings, recrystallizations, and thermal decomposition within volumes of material estimated at a few μm3. This opens the way forward towards calorimetric imaging, by which it should be possible to distinguish between different regions undergoing either reversible or irreversible changes as the temperature is varied.

This publication has 0 references indexed in Scilit: