Quantitative 3-Dimensional Echocardiography for Accurate and Rapid Cardiac Phenotype Characterization in Mice

Abstract
Background— Insufficient techniques exist for rapid and reliable phenotype characterization of genetically manipulated mouse models of cardiac dysfunction. We developed a new, robust, 3-dimensional echocardiography (3D-echo) technique and hypothesized that this 3D-echo technique is as accurate as magnetic resonance imaging (MRI) and histology for assessment of left ventricular (LV) volume, ejection fraction, mass, and infarct size in normal and chronically infarcted mice. Methods and Results— Using a high-frequency, 7/15-MHz, linear-array ultrasound transducer, we acquired ECG and respiratory-gated, 500-μm consecutive short-axis slices of the murine heart within 4 minutes. The short-axis movies were reassembled off-line in a 3D matrix by using the measured platform locations to position each slice in 3D. Epicardial and endocardial heart contours were manually traced, and a B-spline surface was fitted to the delineated image curves to reconstruct the heart volumes. Excellent correlations were obtained betw...