Abstract
In(1)Bruck introduced the notion of a difference set in a finite group. LetGbe a finite group ofvelements and let D = {di},i= 1, . . . ,kbe ak-subset ofGsuch that in the set of differences {di-1dj} each element ≠ 1 inGappears exactly λ times, where 0 < λ <k<v— 1. When this occurs we say that (G,D) is av,k,λ group difference set. Bruck showed that this situation is equivalent to the one where the differences {didj-1} are considered instead, and that av,k, λ group difference set is equivalent to a transitivev,k,λconfiguration, i.e., av,k,λconfiguration which has a collineation group which is transitive and regular on the elements (points) and on the blocks (lines) of the configuration. Among the parametersv,kandλ, then, we have the relation shown by Ryser(5)

This publication has 6 references indexed in Scilit: