Ozone peaks associated with a subtropical tropopause fold and with the trade wind inversion: A case study from the airborne campaign TROPOZ II over the Caribbean in winter
- 20 November 1996
- journal article
- Published by American Geophysical Union (AGU) in Journal of Geophysical Research: Atmospheres
- Vol. 101 (D20) , 25979-25993
- https://doi.org/10.1029/96jd01545
Abstract
Aircraft measurements of ozone, methane, carbon monoxide, relative humidity, and equivalent potential temperature were performed during the TROPOZ II campaign. During the aircraft descent down to Pointe‐à‐Pitre (16.3°N, 61.5°W), at 2100 UTC on January 12, 1991, two ozone peaks (75 ppb) are observed, one at an altitude of 7.5 km and the other at 3.0 km. A physicochemical interpretation for each ozone peak is proposed in connection with the meteorological context, using radiosounding data, total ozone content from TOMS/NIMBUS 7 and diagnoses issued from analyses by the European Centre for Medium‐Range Weather Forecasts, Reading, England. The stratospheric origin of the 7.5‐km ozone peak is inferred from negative correlations between ozone and its precursors and from diagnoses based on potential vorticity and ageostrophic circulations depicting the structure of the tropopause fold embedded in the subtropical jet front system. Using an appropriate method to isolate cross‐ and along‐front ageostrophic circulations, we show that much of the observed structure of the tropopause fold can be ascribed to transverse and vertical circulations associated with the irrotational part of the flow. Though the downward extent of the subtropical tropopause fold (400 hPa) is restricted in comparison with typical extratropical tropopause ones (700 hPa), the present results suggest that subtropical tropopause folds may significantly contribute to the global stratosphere‐troposphere ozone exchange. The origin of the 3.0‐km ozone peak trapped just below the trade wind inversion cannot be ascribed precisely. Analogies with other measurements of dust and aerosols transported over the Atlantic or Pacific in the summer season are discussed. Various possibilities are examined: (1) an earlier stratospheric intrusion event, (2) long‐range transport by the trade winds of biomass burning species emitted over West Africa, and (3) fast photochemical ozone formation occurring just below the trade wind inversion within already polluted air parcels originating from remote regions (United States and Gulf of Mexico) after eastward and southward transport around the western Atlantic anticyclone.Keywords
This publication has 44 references indexed in Scilit:
- Influence of plumes from biomass burning on atmospheric chemistry over the equatorial and tropical South Atlantic during CITE 3Journal of Geophysical Research: Atmospheres, 1994
- Simulation of ozone intrusion caused by a tropopause fold and cut-off lowAtmospheric Environment. Part A. General Topics, 1991
- Meridional and vertical ozone distribution in the background troposphere (70°n-60°s; 0–12 km altitude) from scientific aircraft measurements during the STRATOZ III experiment (june 1984)Atmospheric Environment (1967), 1989
- Meridional and vertical CO and CH4 distributions in the background troposphere (70°N-60°S; 0–12 km altitude) from scientific aircraft measurements during the stratoz III experiment (June 1984)Atmospheric Environment (1967), 1989
- Study of tropospheric ozone in the tropical belt (Africa, America) from STRATOZ and TROPOZ campaignsAtmospheric Environment. Part A. General Topics, 1989
- The Arctic Tropopause FoldMonthly Weather Review, 1987
- A Review of the Structure and Dynamics of Upper-Level Frontal ZonesMonthly Weather Review, 1986
- The Presidents' Day Cyclone of 18–19 February 1979: Influence of Upstream Trough Amplification and Associated Tropopause Folding on Rapid CyclogenesisMonthly Weather Review, 1985
- Transport of water vapour in a stratosphere‐troposphere general circulation model. II: TrajectoriesQuarterly Journal of the Royal Meteorological Society, 1984
- A Multiple Structured Frontal Zone-Jet Stream System as Revealed by Meteorologically Instrumented AircraftMonthly Weather Review, 1974