Theory and measurements of snores
- 1 June 1993
- journal article
- research article
- Published by American Physiological Society in Journal of Applied Physiology
- Vol. 74 (6) , 2828-2837
- https://doi.org/10.1152/jappl.1993.74.6.2828
Abstract
Upper airway narrowing, collapsibility, and resistance are recognized predisposing factors for snoring and obstructive sleep apnea, but the mechanisms of their action and interaction are not known. We studied a simple theoretical model of the upper airways, consisting of a movable wall in a channel segment that connects to the airway opening via a conduit with a resistance. Inspiratory flow (V) through the channel segment causes local pressure changes due to viscous losses and the Bernoulli force that may overcome the elastic forces acting on the movable wall. The model predicts instability leading to upper airway closure over a wide range of parameter values. Increasing inspiratory V above a boundary, determined by values of upper airway resistance, segment compliance, length, width, and diameter, as well as gas density, leads to a dynamic airway closure. The mathematical model establishes the power relationships between parameters and provides physiologically realistic quantitative simulation of upper airway closure when values are adapted from literature and from radiographic measurements of upper airway motion induced by negative pressure. The rate of appearance of repetitive sound structures during snoring was favorably compared with the model's prediction of the time course of wall motion during collapse. V measurements during simulated snores revealed an asymmetric oscillatory pattern compatible with repetitive upper airway closure. We conclude that snoring may be modeled as a series of dynamic closure events of the upper airways. The model predicts that the width and length of the movable portion of the upper airways and the gas density are likely to affect the onset of snoring, in addition to other, previously recognized, parameters.Keywords
This publication has 0 references indexed in Scilit: