Abstract
A comparison of the ampullae of Lorenzini among 40 species of skates (Rajoidei) demonstrates a close relationship between inferred electroreceptive capabilities and feeding mechanisms. Three general lines of morphological modifications are noted. (1) Whereas the majority of ampullary pores are located on the ventral surface of the dorsoventrally flattened body, the relative proportion of ventral pores is significantly lower on species inhabiting aphotic waters. (2) The ventral pores on more piscivorous species are distributed over a larger portion of body surface than they are on those species that feed primarily on invertebrates. Ventral pores in this latter group are more noticeably concentrated around the mouth and their densities on the adult are inversely related to the overall mobility of preferred prey species. (3) The size of each ampulla and the number of alveoli associated with it are directly related to the habitat depth occupied by each species. Shallow‐water species have smaller ampullae with fewer alveoli than deeper‐dwelling (> 1,000 m) species.The general distribution of ampullary pores on deep dwelling rajoids appears to compensate for reduced visual input, whereas their relative densities are a measure of the system's resolution and reflect major differences in feeding strategies. The increased ampullary size and complexity observed in deep‐sea rajoids provides mechanisms to increase both the sensitivity and signal‐to‐noise ratios.