Calculating lens dose and surface dose rates from 90Sr ophthalmic applicators using Monte Carlo modeling

Abstract
Using a 90Sr applicator for brachytherapy for the reduction of recurrence rates after pterygium excisions has been an effective therapeutic procedure. Accurate knowledge of the dose being applied to the affected area on the sclera has been lacking, and for decades inaccurate estimates for lens dose have thus been made. Small errors in the assumptions which are required to make these estimates lead to dose rates changing exponentially because of the attenuation of beta particles. Monte Carlo simulations have been used to evaluate the assumptions that are now being used for the calculation of the surface dose rate and the corresponding determination of lens dose. For an ideal 90Sr applicator, results from this study indicate dose rates to the most radiosensitive areas of the lens ranging from 8.8 to 15.5 cGy/s. This range is based on different eye dimensions that ultimately corresponds to a range in distance between the applicator surface and the germinative epithelium of the lens of 2-3 mm. Furthermore, the conventional 200 cGy threshold for whole lens cataractogenesis is questioned for predicting complications from scleral brachytherapy. The dose to the germinative epithelium should be used for studying radiocataractogenesis.

This publication has 20 references indexed in Scilit: