Abstract
By means of Monte Carlo simulations a comparison has been made between ordinary least squares regression and robust regression. The robust regression procedure is based on the Huber estimate and is computed by means of the iteratively reweighted least squares algorithm. The performance of both procedures has been evaluated for estimation of the parameters of a calibration function and for determination of the concentration of unknown samples. The influence of the distributional characteristics skewness and kurtosis has been studied, and the number of measurements used for constructing the calibration curve has also been taken into account. Under certain conditions robust regression offers an advantage over least squares regression.