The Curve Fitting Problem: A Bayesian Approach

Abstract
In the curve fitting problem two conflicting desiderata, simplicity and goodness-of-fit, pull in opposite directions. To this problem, we propose a solution that strikes a balance between simplicity and goodness-of-fit. Using Bayes’ theorem we argue that the notion of prior probability represents a measurement of simplicity of a theory, whereas the notion of likelihood represents the theory’s goodness-of-fit. We justify the use of prior probability and show how to calculate the likelihood of a family of curves. We diagnose the relationship between simplicity of a theory and its predictive accuracy.

This publication has 6 references indexed in Scilit: