Regulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic β-cell: a computational approach

Abstract
In this report we describe a mathematical model for the regulation of cAMP dynamics in pancreatic β-cells. Incretin hormones such as glucagon-like peptide 1 (GLP-1) increase cAMP and augment insulin secretion in pancreatic β-cells. Imaging experiments performed in MIN6 insulinoma cells expressing a genetically encoded cAMP biosensor and loaded with fura-2, a calcium indicator, showed that cAMP oscillations are differentially regulated by periodic changes in membrane potential and GLP-1. We modeled the interplay of intracellular calcium (Ca2+) and its interaction with calmodulin, G protein-coupled receptor activation, adenylyl cyclases (AC), and phosphodiesterases (PDE). Simulations with the model demonstrate that cAMP oscillations are coupled to cytoplasmic Ca2+ oscillations in the β-cell. Slow Ca2+ oscillations (3–4 min−1) entrain high-frequency, low-amplitude cAMP oscillations. The model predicts that GLP-1 receptor agonists induce cAMP oscillations in phase with cytoplasmic Ca2+ oscillations. In contrast, observed antiphasic Ca2+ and cAMP oscillations can be simulated following combined glucose and tetraethylammonium-induced changes in membrane potential. The model provides additional evidence for a pivotal role for Ca2+-dependent AC and PDE activation in coupling of Ca2+ and cAMP signals. Our results reveal important differences in the effects of glucose/TEA and GLP-1 on cAMP dynamics in MIN6 β-cells.