Digital computer solutions of the rigorous equations for scattering problems
- 1 January 1965
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in Proceedings of the IEEE
- Vol. 53 (8) , 796-804
- https://doi.org/10.1109/proc.1965.4057
Abstract
A survey of recently developed techniques for solving the rigorous equations that arise in scattering problems is presented. These methods generate a system of linear equations for the unknown current density by enforcing the boundary conditions at discrete points in the scattering body or on its surface. This approach shows promise of leading to a systematic solution for a dielectric or conducting body of arbitrary size and shape. The relative merits of the linear-equation solution and the variational solutions are discussed and numerical results, obtained by these two methods, are presented for straight wires of finite length. The computation effort required with the linear-equation solution can be reduced by expanding the current distribution in a series of modes of the proper type, by making a change of variables for integration, and by employing interpolation formulas. Solutions are readily obtained for a scattering body placed in an incident plane-wave field or in the near-zone of a source. Examples are included for both cases, using a straight wire of finite length as the scattering body. The application of these techniques to scattering by a dielectric body is illustrated with dielectric rods of finite length.Keywords
This publication has 15 references indexed in Scilit:
- Scattering by an Arbitrary Array of Parallel WiresIEEE Transactions on Microwave Theory and Techniques, 1965
- Scattering by a dielectric cylinder of arbitrary cross section shapeIEEE Transactions on Antennas and Propagation, 1965
- Scattering from bodies of revolutionIEEE Transactions on Antennas and Propagation, 1965
- A numerical technique for the determination of scattering cross sections of infinite cylinders of arbitrary geometrical cross sectionIEEE Transactions on Antennas and Propagation, 1965
- Scattering from parallel metallic cylinders with arbitrary cross sectionsIEEE Transactions on Antennas and Propagation, 1964
- Scattering by perfectly-conducting rectangular cylindersIEEE Transactions on Antennas and Propagation, 1963
- The theoretical and numerical determination of the radar cross section of a prolate spheroidIEEE Transactions on Antennas and Propagation, 1956
- Electromagnetic Back-Scattering from Cylindrical WiresJournal of Applied Physics, 1952
- The Patterns of Antennas Located near Cylinders of Elliptical Cross SectionProceedings of the IRE, 1951
- A Short Method for Evaluating Determinants and Solving Systems of Linear Equations With Real or Complex CoefficientsTransactions of the American Institute of Electrical Engineers, 1941