The Molecular Composition of Secondary Aerosol Particles Formed from Terpenes
Open Access
- 1 March 1978
- journal article
- research article
- Published by Taylor & Francis in Journal of the Air Pollution Control Association
- Vol. 28 (3) , 236-240
- https://doi.org/10.1080/00022470.1978.10470595
Abstract
The composition of aerosol particle products formed from the photochemical reaction of terpenes with NOx and the chemical reaction of terpenes with ozone was determined using direct insertion probe/high resolution mass spectrometry. Samples of the aerosol particles generated from these gas phase reactions were collected on stainless steel disks using a specially-designed impactor. The samples were analyzed using computer-controlled high resolution mass spectrometry. The photochemical reaction of limonene with NOx produced more than 30 reaction products in the aerosol phase. The major products identified included aldehydes, alcohols, acids, peroxides, and nitrate esters of alcohols, acids, and peroxides. In addition, there was evidence of dimeric and possibly trimeric reaction products. The composition of aerosol particle products formed from the dark reaction of ozone with limonene was determined and found similar to those products generated in the photochemical reaction, excluding the nitrated species. Aerosol concentrations were monitored using nephelometry which indicated a conversion of terpene to aerosol of 50% or greater for both the limonene and terpinolene reaction systems. The results show that direct insertion probe high resolution mass spectrometric technique has the capability for determining the composition of very polar and high molecular weight materials in aerosol particles. The composition of terpene aerosol particle products and the mass spectral data obtained from their analysis can be used in further studies to determine the importance of terpene aerosol particle formation in ambient air.Keywords
This publication has 0 references indexed in Scilit: