Noninvasive Brain-Actuated Control of a Mobile Robot by Human EEG

Abstract
Brain activity recorded noninvasively is sufficient to control a mobile robot if advanced robotics is used in combination with asynchronous electroencephalogram (EEG) analysis and machine learning techniques. Until now brain-actuated control has mainly relied on implanted electrodes, since EEG-based systems have been considered too slow for controlling rapid and complex sequences of movements. We show that two human subjects successfully moved a robot between several rooms by mental control only, using an EEG-based brain-machine interface that recognized three mental states. Mental control was comparable to manual control on the same task with a performance ratio of 0.74.

This publication has 17 references indexed in Scilit: