Abstract
A supervised learning neural network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregate (union) of fuzzy set hyperboxes. A fuzzy set hyperbox is an n-dimensional box defined by a min point and a max point with a corresponding membership function. The min-max points are determined using the fuzzy min-max learning algorithm, an expansion-contraction process that can learn nonlinear class boundaries in a single pass through the data and provides the ability to incorporate new and refine existing classes without retraining. The use of a fuzzy set approach to pattern classification inherently provides a degree of membership information that is extremely useful in higher-level decision making. The relationship between fuzzy sets and pattern classification is described. The fuzzy min-max classifier neural network implementation is explained, the learning and recall algorithms are outlined, and several examples of operation demonstrate the strong qualities of this new neural network classifier.

This publication has 28 references indexed in Scilit: