Miniaturized Multiplex Label-Free Electronic Chip for Rapid Nucleic Acid Analysis Based on Carbon Nanotube Nanoelectrode Arrays
- 1 October 2004
- journal article
- Published by Oxford University Press (OUP) in Clinical Chemistry
- Vol. 50 (10) , 1886-1893
- https://doi.org/10.1373/clinchem.2004.036285
Abstract
Background: Reducing cost and time is the major concern in clinical diagnostics, particularly in molecular diagnostics. Miniaturization technologies have been recognized as promising solutions to provide low-cost microchips for diagnostics. With the recent advancement in nanotechnologies, it is possible to further improve detection sensitivity and simplify sample preparation by incorporating nanoscale elements in diagnostics devices. A fusion of micro- and nanotechnologies with biology has great potential for the development of low-cost disposable chips for rapid molecular analysis that can be carried out with simple handheld devices. Approach: Vertically aligned multiwalled carbon nanotubes (MWNTs) are fabricated on predeposited microelectrode pads and encapsulated in SiO2 dielectrics with only the very end exposed at the surface to form an inlaid nanoelectrode array (NEA). The NEA is used to collect the electrochemical signal associated with the target molecules binding to the probe molecules, which are covalently attached to the end of the MWNTs. Content: A 3 × 3 microelectrode array is presented to demonstrate the miniaturization and multiplexing capability. A randomly distributed MWNT NEA is fabricated on each microelectrode pad. Selective functionalization of the MWNT end with a specific oligonucleotide probe and passivation of the SiO2 surface with ethylene glycol moieties are discussed. Ru(bpy)2+-mediator-amplified guanine oxidation is used to directly measure the electrochemical signal associated with target molecules. Summary: The discussed MWNT NEAs have ultrahigh sensitivity in direct electrochemical detection of guanine bases in the nucleic acid target. Fewer than ∼1000 target nucleic acid molecules can be measured with a single microelectrode pad of ∼20 × 20 μm2, which approaches the detection limit of laser scanners in fluorescence-based DNA microarray techniques. MWNT NEAs can be easily integrated with microelectronic circuitry and microfluidics for development of a fully automated system for rapid molecular analysis with minimum cost.Keywords
This publication has 27 references indexed in Scilit:
- Glucose Biosensors Based on Carbon Nanotube Nanoelectrode EnsemblesNano Letters, 2003
- Combinatorial chips for optimizing the growth and integration of carbon nanofibre based devicesNanotechnology, 2003
- Enzyme-Coated Carbon Nanotubes as Single-Molecule BiosensorsNano Letters, 2003
- Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA DetectionNano Letters, 2003
- Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric BiosensorsJournal of the American Chemical Society, 2003
- Electronic properties of multiwalled carbon nanotubes in an embedded vertical arrayApplied Physics Letters, 2002
- Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical SpeciesScience, 2001
- Electronic Detection of Nucleic AcidsThe Journal of Molecular Diagnostics, 2001
- DNA chips: State-of-the artNature Biotechnology, 1998
- An active microelectronics device for multiplex DNA analysisIEEE Engineering in Medicine and Biology Magazine, 1996