Electrical Conductivity and Relaxation in Ice Crystals with Known Impurity Content

Abstract
Three-terminal dielectric bridge measurements (in the range 20 Hz to 100 kHz between — 5°C and —90 to — 120°C) have been made of ice doped with (a) conductivity-enhancing ionic impurities (HCl, HF, NaCl, KF, NH4F) and (b) conductivity-depressing solutes (NH4OH, NH4Cl, NH5CO3, NaHCO3). Blocking electrodes were used for the first group. The true ice parameters were extracted from linearized plots of the Debye equations. Chlorides and fluorides showed very similar characteristics in their spectra and static conductivity. The results suggest that static conductivity is controlled by extrinsic protons. On the other hand, bases, or solutes that impart a positive freezing potential to the ice, suppress extrinsic protons. In this case, the static conductivity was not, or only weakly, temperature dependent and lower than in the first group. A conductivity cross-over was observed in neither case. The dielectric conductivity contribution is strongly dependent on impurity concentration but apparently less affected than the static conductivity by the nature of the solute. The principal relaxation time is reduced by most solutes, exceptions are pure (bicarbonate-free) bases, sodium bicarbonate, and carbon dioxide. Nous avons effectué des mesures électriques à la méthode du pont (de 20 Hz à 100 kHz entre —5°C et — 90, — 120°C) dans le cas de glace dopée avec: (a) des impuretés ioniques augmentant la conductivité (HCl, HF, NaCl, KF, NH4F), et (b) des impuretés diminuant la conductivité (NH4OH, NH4Cl, NH5CO3, NaHCO3). Des électrodes bloquantes ont été utilisées dans le premier cas. Les paramètres propres à la glace ont été obtenus à partir des formes linéarisées des équations de Debye. Les chlorures et les fluorures entrainent des caractéristiques très semblables dans les spectres et la conductivité statique. Les résultats suggèrent que la conductivité en courant continu est contrôlée par des protons extrinsèques, c’est-à-dire introduits par les impuretés. Au contraire, les hydroxydes et les sels qui conduisent la glace à présenter un potentiel positif lors de la congélation, suppriment les protons extrinsèques. Dans ce cas la conductivité en courant continu n’est pas, ou seulement faiblement, dépendante de la température; elle est, en outre bien plus faible que pour le premier groupe d’impuretés. Le “cross-over” de conductivité n’a été observé dans aucun des cas. La contribution diélectrique à la conductivité dépend fortement de la concentration en impuretés mais est beaucoup moins affecté par la nature des impuretés que la conductivité en courant continu. Le temps de relaxation principal est diminué par toutes les impuretés sauf les hydroxydes purs (sans CO2), le bicarbonate de sodium et le dioxyde de carbone. Dielektrische Brückenmessungen (Frequenzbereich 20 Hz bis 100 kHz; Temperaturbereich —5°C bis — 90°C bzw. — 120°C) wurden ausgeführt an Eis, das dotiert war mit (a) Spurstoffen, welche die Leitfähigkeit erhöhen (HCl, HF, NaCl, KF, NH4F) und (b) solchen, welche die Leitfähigkeit vermindern (NH4OH, NH4Cl, NH5CO3, NaHCO3). Die erste Gruppe wurde mit blockierenden Elektroden gemessen. Die Eiswerte wurden aus linearisierten Auftragungen der Debyegleichung ermittelt. Chloride und Fluoride zeigten sehr ähnliche Merkmale in ihren Spektren und ihrer statischen Leitfähigkeit. Die Ergebnisse legen nahe, dass die statische Leitfähigkeit von Fremdprotonen bestimmt wird. Andererseits unterdrücken Basen oder Salze, die dem Eis ein positives Gefrierpotential verleihen, Fremdprotonen. In diesem Fall war die statische Leitfähigkeit nicht oder nur wenig temperaturabhängig und kleiner als in der ersten Gruppe. Ein cross-over der Leitfähigkeiten wurde in keinem Falle beobachtet. Der dielektrische Leitfähigkeitsbeitrag ist stark von der Konzentration des Fremdstoffes abhängig, aber weniger als die statische Leitfähigkeit von seiner chemischen Beschaffenheit. Die meisten Lösungsstoffe verkürzen die Hauptrelaxationszeit. Ausnahmen sind reine, bikarbonatfreie Basen, Natriumbikarbonat und Kohlendioxid.