A tree-structured adaptive network for function approximation in high-dimensional spaces
- 1 March 1991
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Neural Networks
- Vol. 2 (2) , 285-293
- https://doi.org/10.1109/72.80339
Abstract
Nonlinear function approximation is often solved by finding a set of coefficients for a finite number of fixed nonlinear basis functions. However, if the input data are drawn from a high-dimensional space, the number of required basis functions grows exponentially with dimension, leading many to suggest the use of adaptive nonlinear basis functions whose parameters can be determined by iterative methods. The author proposes a technique based on the idea that for most of the data, only a few dimensions of the input may be necessary to compute the desired output function. Additional input dimensions are incorporated only where needed. The learning procedure grows a tree whose structure depends upon the input data and the function to be approximated. This technique has a fast learning algorithm with no local minima once the network shape is fixed, and it can be used to reduce the number of required measurements in situations where there is a cost associated with sensing. Three examples are given: controlling the dynamics of a simulated planar two-joint robot arm, predicting the dynamics of the chaotic Mackey-Glass equation, and predicting pixel values in real images from pixel values above and to the leftKeywords
This publication has 16 references indexed in Scilit:
- Regularization Algorithms for Learning That Are Equivalent to Multilayer NetworksScience, 1990
- Fast Learning in Networks of Locally-Tuned Processing UnitsNeural Computation, 1989
- Additive Regression and Other Nonparametric ModelsThe Annals of Statistics, 1985
- A model for sensorimotor control and learningBiological Cybernetics, 1978
- Analysis of recursive stochastic algorithmsIEEE Transactions on Automatic Control, 1977
- Sequential GMDH Algorithm and Its Application to River Flow PredictionIEEE Transactions on Systems, Man, and Cybernetics, 1976
- Stationary and nonstationary learning characteristics of the LMS adaptive filterProceedings of the IEEE, 1976
- Multidimensional binary search trees used for associative searchingCommunications of the ACM, 1975
- Polynomial Theory of Complex SystemsIEEE Transactions on Systems, Man, and Cybernetics, 1971
- Problems in the Analysis of Survey Data, and a ProposalJournal of the American Statistical Association, 1963