Experimental determination of the H(n=3) density matrix for 80-keVH+on He

Abstract
The density matrix is determined for H(n=3) atoms produced in axially symmetric electron-transfer collisions of 80-keV protons on helium. In the experiment axial or transverse electric fields with respect to the proton beam are applied to the collision region. The intensity and polarization of Balmer-α radiation emitted by the H(n=3) atoms are measured as a function of the strength of the external electric field. Detailed analysis of the measured optical signals, taking into account the time evolution of the H(n=3) atoms in the applied electric field, makes it possible to extract the complete density matrix of the H(n=3) atoms at the moment of their formation, averaged over all impact parameters. Significant improvements in the experimental technique and in the data analysis associated with the fit of the density matrix to the optical signals have eliminated systematic effects that were present in our previous work [Phys. Rev. A 33, 276 (1986)].