Landslide inventories and their statistical properties
Top Cited Papers
- 9 June 2004
- journal article
- research article
- Published by Wiley in Earth Surface Processes and Landforms
- Vol. 29 (6) , 687-711
- https://doi.org/10.1002/esp.1064
Abstract
Landslides are generally associated with a trigger, such as an earthquake, a rapid snowmelt or a large storm. The landslide event can include a single landslide or many thousands. The frequency–area (or volume) distribution of a landslide event quantifies the number of landslides that occur at different sizes. We examine three well‐documented landslide events, from Italy, Guatemala and the USA, each with a different triggering mechanism, and find that the landslide areas for all three are well approximated by the same three‐parameter inverse‐gamma distribution. For small landslide areas this distribution has an exponential ‘roll‐over’ and for medium and large landslide areas decays as a power‐law with exponent ‐2·40. One implication of this landslide distribution is that the mean area of landslides in the distribution is independent of the size of the event. We also introduce a landslide‐event magnitude scale mL = log(NLT), with NLT the total number of landslides associated with a trigger. If a landslide‐event inventory is incomplete (i.e. smaller landslides are not included), the partial inventory can be compared with our landslide probability distribution, and the corresponding landslide‐event magnitude inferred. This technique can be applied to inventories of historical landslides, inferring the total number of landslides that occurred over geologic time, and how many of these have been erased by erosion, vegetation, and human activity. We have also considered three rockfall‐dominated inventories, and find that the frequency–size distributions differ substantially from those associated with other landslide types. We suggest that our proposed frequency–size distribution for landslides (excluding rockfalls) will be useful in quantifying the severity of landslide events and the contribution of landslides to erosion. Copyright © 2004 John Wiley & Sons, Ltd.Keywords
This publication has 31 references indexed in Scilit:
- Rockfall hazard and risk assessment in the Yosemite Valley, California, USANatural Hazards and Earth System Sciences, 2003
- The impact of landslides in the Umbria region, central ItalyNatural Hazards and Earth System Sciences, 2003
- Statistical analysis of rockfall volume distributions: Implications for rockfall dynamicsJournal of Geophysical Research, 2003
- Landform pattern description from aerial photographsPublished by Elsevier ,2003
- Probabilistic approach to rock fall hazard assessment: potential of historical data analysisNatural Hazards and Earth System Sciences, 2002
- Power-law correlations of landslide areas in central ItalyEarth and Planetary Science Letters, 2001
- The characterization of landslide size distributionsGeophysical Research Letters, 2001
- Self-organized criticalityReports on Progress in Physics, 1999
- Self‐organized criticality in a landslide modelGeophysical Research Letters, 1998
- Scaling and universality in avalanchesPhysical Review A, 1989