Black Holes as Elementary Particles

Abstract
It is argued that the qualitative features of black holes, regarded as quantum mechanical objects, depend both on the parameters of the hole and on the microscopic theory in which it is embedded. A thermal description is inadequate for extremal holes. In particular, extreme holes of the charged dilaton family can have zero entropy but non-zero, and even (for $a>1$) formally infinite, temperature. The existence of a tendency to radiate at the extreme, which threatens to overthrow any attempt to identify the entropy as available internal states and also to expose a naked singularity, is at first sight quite disturbing. However by analyzing the perturbations around the extreme holes we show that these holes are protected by mass gaps, or alternatively potential barriers, which remove them from thermal contact with the external world. We suggest that the behavior of these extreme dilaton black holes, which from the point of view of traditional black hole theory seems quite bizarre, can reasonably be interpreted as the holes doing their best to behave like normal elementary particles. The $a<1$ holes behave qualitatively as extended objects.