Abstract
The one-dimensional extended Peierls-Hubbard model with half-filled-band electrons is studied in order to clarify the lattice relaxation path of the photogenerated charge-transfer excitation in halogen-bridged mixed-valence metal complexes. The ground and excited states are calculated within mean-field theory for electrons and the adiabatic approximation for phonons. It is concluded that the main origin of the photoinduced absorption is a distant pair of the hole-polaron and the electron-polaron. This distant pair is created not from the ground state of the self-trapped exciton (STE), but from the excited states of the STE through their autodissociation. This is consistent with the experiment on the excitation energy dependence of the photoinduced absorption yield.