Computing persistent homology

Abstract
We study the homology of a filtered d-dimensional simplicial complex K as a single algebraic entity and establish a correspondence that provides a simple description over fields. Our analysis enables us to derive a natural algorithm for computing persistent homology over an arbitrary field in any dimension. Our study also implies the lack of a simple classification over non-fields. Instead, we give an algorithm for computing individual persistent homology groups over an arbitrary PIDs in any dimension.

This publication has 5 references indexed in Scilit: