The Newtonian limit of Penrose's quasi-local mass
- 1 September 1986
- journal article
- research article
- Published by IOP Publishing in Classical and Quantum Gravity
- Vol. 3 (5) , 841-852
- https://doi.org/10.1088/0264-9381/3/5/014
Abstract
Penrose's definition, (1982), of quasi-local mass is applied in the Newtonian limit of general relativity. The calculations are for 2-surfaces within a hypersurface of constant Newtonian time t. The leading-order terms in both the mass within the 2-surface and the difference between the mass and a conserved mass within the 2-surface are calculated. The former is just the Newtonian mass contained within the 2-surface and the latter, for a 2-surface surrounding an isolated system, gives the standard expression for the energy of the system. When applied to 2-surfaces containing parts of a system results interpretable in terms of binding energies appear.Keywords
This publication has 12 references indexed in Scilit:
- Momentum flux at null infinityClassical and Quantum Gravity, 1985
- Angular momentum at null infinityClassical and Quantum Gravity, 1984
- Spinor fields at spacelike infinityGeneral Relativity and Gravitation, 1983
- Newtonian and post-Newtonian approximations are asymptotic to general relativityPhysical Review D, 1983
- Twistor theory and the energy—momentum and angular momentum of the gravitational field at spatial infinityProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1983
- Quasi-local mass and angular momentum in general relativityProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1982
- A space-time calculus based on pairs of null directionsJournal of Mathematical Physics, 1973
- Twistor theory: An approach to the quantisation of fields and space-timePhysics Reports, 1973
- Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie) (Suite)Annales Scientifiques de lʼÉcole Normale Supérieure, 1924
- Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie)Annales Scientifiques de lʼÉcole Normale Supérieure, 1923