Abstract
Theory suggests that three distinct types of turbulence can occur in the low Mach number limit of polytropic flow: nearly incompressible flows dominated by vorticity, nearly pure acoustic turbulence dominated by compression, and flows characterized by near statistical equipartition of vorticity and compressions. Distinctions between these kinds of turbulence are investigated here by direct numerical simulation of two‐dimensional compressible hydrodynamic turbulence. Dynamical scalings of density fluctuations, examination of the ratio of transverse to longitudinal velocity fluctuations, and spectral decomposition of the fluctuations are employed to distinguish the nature of these low Mach number solutions. A strong dependence on the initial data is observed, as well as a tendency for enhanced effects of compressibility at later times and at higher wave numbers, as suggested by theories of nearly incompressible flows.

This publication has 26 references indexed in Scilit: