Cyclic motor activity and trophicity after jejunal resection and bypass in rats
- 1 January 1986
- journal article
- research article
- Published by Springer Nature in Digestive Diseases and Sciences
- Vol. 31 (1) , 65-72
- https://doi.org/10.1007/bf01347911
Abstract
The aim of the study was to examine the changes in intestinal motility induced by an extensive jejunal resection and bypass in rats using an electromyographic technique. The relationship, if any, between the development of motility and adaptive modifications of intestinal trophicity was also studied. A massive jejunal resection, preserving a 7-cm segment distal to the ligament of Treitz, was performed in one group of animals. In a second group, the jejunum was bypassed as a self-emptying blind loop. Two shamoperated groups underwent transection and reanastomosis on the proximal jejunum or ileum. Electromyographic activity was studied at the 10th and 30th postoperative days by means of electrodes implanted throughout the remaining or bypassed bowel and was expressed by means of the pattern of recurrence of the migrating myoelectric complex (MMC). After a month, the animals were sacrificed. Mucosal and muscular wet weight and protein content (mg/cm) of the intestine were then determined. The results showed that 10 days after the jejunal resection in the fasting state, MMC cycle duration is different in the remaining jejunum and in the ileum. However, the distribution of MMC phases in the jejunum was modified and was similar to the one in the ileum. Thirty days after resection, MMC cycle duration, as well as phase distribution in the remaining jejunum, resemble the MMC patterns in the ileum. These changes were not observed after bypass. After the return of MMCs after postprandial inhibition produced by a meal, MMC duration in the ileum was greatly decreased until a month after jejunal resection. In contrast, the jejunal bypass did not produce this modification. However, both resection and bypass induced a similar trophic change in the mucosa and muscle of the intestine in continuity. A decrease of protein content in muscle of the excluded segment in bypassed animals was observed. In conclusion, no direct relationship could be detected between the intestinal trophic changes and the recoordination of cyclic motor patterns in the intestine in continuity following the two types of surgical procedures.Keywords
This publication has 42 references indexed in Scilit:
- Complex clocksDigestive Diseases and Sciences, 1983
- Changes in circulating levels of cholecystokinin, gastrin, and pancreatic polypeptide after small bowel resection in dogsThe American Journal of Surgery, 1983
- Gut and Pancreatic Hormones after Jejunoileal Bypass with 3:1 or 1:3 Jejunoileal RatioDigestion, 1983
- Gut hormone release after intestinal resection.Gut, 1982
- Amino acid and peptide absorption in bypassed jejunum following jejunoileal bypass in ratsDigestive Diseases and Sciences, 1981
- Variations nycthémérales du temps de séjour des aliments dans les différents segments du tube digestif chez le ratReproduction Nutrition Développement, 1981
- The Interdigestive Motor Complex of Normal Subjects and Patients with Bacterial Overgrowth of the Small IntestineJournal of Clinical Investigation, 1977
- The interdigestive myo‐electric complex of the stomach and small bowel of dogs.The Journal of Physiology, 1975
- Studies on the site of fat absorption: 2 Fat balances after resection of varying amounts of the small intestine in manGut, 1961
- AN EXPERIMENTAL EVALUATION OF THE NUTRITIONAL IMPORTANCE OF PROXIMAL AND DISTAL SMALL INTESTINEAnnals of Surgery, 1954