Interactions Between Vasoactive Intestinal Peptide and Dopamine in the Rabbit Retina: Stimulation of a Common Adenylate Cyclase

Abstract
Although 3,4-dihydroxyphenylethylamine (dopamine, DA) and vasoactive intestinal peptide (VIP) have been reported to stimulate adenylate cyclase activity in the rabbit retina, possible interactions between VIP-sensitive and DA-sensitive adenylate cyclase systems have not been previously investigated. To elucidate the interactions between these two putative transmitter-stimulated cyclase systems, the effects of VIP, DA, and VIP + DA on the conversion of [alpha-32P]ATP to [32P]cyclic AMP in rabbit retinal homogenates were measured. VIP stimulated adenylate cyclase activity in a biphasic manner, suggesting that two classes of VIP receptors may be involved in the induction of cyclic AMP formation. DA was less potent than VIP, and stimulated cyclase activity with a monophasic dose-response curve. When assayed together, these stimulations were partially nonadditive, implying the existence of a common adenylate cyclase pool that may be stimulated by both putative neurotransmitters. The dopaminergic antagonist (+)-butaclamol completely blocked dopaminergic stimulation, but had no significant effect on VIP-induced stimulation, indicating that VIP interacts with specific VIP receptor sites, which are distinct from the dopaminergic receptor sites. Furthermore, the specific D-2 dopaminergic receptor agonist LY141865 demonstrated no inhibitory effect on adenylate cyclase activity, suggesting that the interaction between the VIP- and DA-sensitive adenylate cyclase systems does not result from a D-2 receptor-mediated cyclase inhibition in the rabbit retina. Finally, at maximally effective concentrations, DA and VIP were less potent than fluoride or forskolin in the stimulation of cyclic AMP formation, suggesting that adenylate cyclase pools that are not sensitive to DA and VIP may also be present in this retina.(ABSTRACT TRUNCATED AT 250 WORDS)