Migration of human malignant astrocytoma cells in the mammalian brain: Scherer revisited

Abstract
Fresh suspensions of human glioblastoma multiforme were preincubated in the plant lectin Phaseolus vulgaris leucoagglutinin (PHAL) and implanted into cortical pockets in adult rat brain. Brains were investigated periodically over 30 postoperative days and the migration of the human glioblastoma cells was traced with anti-PHAL immunofluorescence or the overexpression of human specific p185c-neu a specific marker of a class of human malignant astrocytoma cells. The principal pathway of migration of the implanted human cells in the rat brain was ventrally through cortical gray matter and into the corpus callosum, with rapid lateral distribution in this and other parallel and intersecting white matter fascicles. Human glioblastoma cells also migrated on basement membrane lined blood vessels, pia-glia membrane and spaces of Virchow-Robin, as well as the subependymal space of the ventricles. These paths of migration of human glioblastoma cells in the rat brain are consistent with the pathways of spread of glioblastoma in the human brain as described by Scherer over 50 years ago, indicating that multifocal malignant astrocytomas have common migratory pathways in mature mammalian brain.